Loading web-font TeX/Math/Italic

A Bayesian Network Model of Karmic Rebirth: Formalizing Consciousness, Realm Existence, and Liberation in Buddhist Philosophy

Authors :
Parinya Charoenvorakiat and DeepSeek.

Abstract
This paper presents a coupled Hidden Markov Model (HMM) to formalize the Buddhist doctrine of rebirth, integrating:

  1. Consciousness dynamics (viññāṇaQ(t)) conditioned by past states and current realm existence (nāmarūpaV(t)).
  2. Realm-dependent karmic transitions via P(Q(t)|Q(t-1),V(t)).
  3. Liberation (Nibbāna) as an absorbing state.

The model aligns with early Buddhist texts (e.g., SN 12.1MN 136) and offers testable hypotheses for consciousness studies.

1. Introduction

Buddhist rebirth posits that consciousness (Q(t)) and realm existence (V(t)) are interdependently conditioned (paṭicca-samuppāda). Prior work has:

  • Modeled karma via Markov chains [1]
  • Compared consciousness to quantum systems [2]
    But none formalize the realm-gated feedback central to rebirth. We bridge this gap with a Bayesian network where:
  • Q(t) evolves under current realm modulation.
  • V(t) is emitted by Q(t), closing the causal loop.

2. Model Specification

2.1 Definitions

  • Consciousness State (Q(t) ∈ ℝᴺ): Latent traits (greed, wisdom, etc.).
  • Realm State (V(t) ∈ {1, …, K}): Human, deva, hell, etc.
  • Transition Kernel

k(t) = P(Q(t)∣Q(t−1), V(t)) \quad\text{(Realm-gated consciousness update)}

  • Emission Probability:

o(t) = P(V(t)∣Q(t)) \quad\text{(Realm emission)}

2.2 Dynamical Equations

  1. Consciousness Update:
    Q(t) = A⋅Q(t − 1) + B_V(t)​ ⋅ Q(t − 1) + ϵt
    • A: Baseline karmic drift.
    • B_v: Realm-specific transformation (e.g., B_\text{hell} amplifies suffering).
  2. Realm Emission:

V(t) ∼ Categorical(softmax(W ⋅ Q(t)))

2.3 Karmic Constraints

  • Ethical Boundsk(t) penalizes unwholesome transitions (e.g., hatred → degraded \ Q(t)).
  • Rebirth Ruleso(t) maps high-wisdom Q(t) to favorable realms (MN 135).

3. Theoretical Results

Theorem 1 (Coupled HMM Structure)

The system forms a coupled HMM where:

  • Q(t) depends on Q(t-1) and V(t).
  • V(t) depends on Q(t), creating feedback.

Proof: By believable based on the Buddha’s Text.

Corollary 1 (Nirvana as Absorption)

If Q(t) reaches Q* (enlightenment):

P(Q(t + 1) = Q∗ ∣ Q(t) = Q∗) = 1, \quad V(t + 1) = \text{Nirvana.}

Basis“The liberated mind does not return” (MN 106).

Corollary 2 (Realm Lock-In)

Persistent V(t) = v leads to:

\lim_{t \to \infty} Q(t) \to \text{Fixed point of } B_v.

Basis“Beings are bound by their cravings” (DN 15).

4. Simulations

4.1 Parameters

  • Realms: Human (B_1), Deva (B_2), Hell (B_3).
  • Effects:
    • B_1: Moderate drift (e.g., human ethics).
    • B_2: Amplifies wisdom.
    • B_3: Increases volatility.

4.2 Results

  • Human: Gradual refinement of Q(t).
  • Deva: Rapid convergence to wholesome states.
  • Hell: Chaotic Q(t).

5. Discussion

5.1 Buddhist Textual Alignment

  • Dependent Origination (SN 12.1):

“With consciousness, name-and-form; with name-and-form, consciousness.”
Matches the coupled Q(t)–V(t) feedback.

  • Karmic Maturation (AN 3.34):

“Karma ripens in realms fitting its nature.”
Captured by B_v matrices.

5.2 Limitations

  • Linearity Assumption: Karma may be nonlinear.
  • Finite Realms: Ignores formless realms (arūpa-loka).

5.3 Future Work

  • Add parallel rebirth streams (Mahayana cosmology).
  • Test against NDE/rebirth reports [3].

6. Conclusion

We formalize rebirth as a realm-gated stochastic process, unifying:

  1. Buddhist doctrine (consciousness-realm interdependence).
  2. Computational rigor (coupled HMMs).
  3. Testable predictions (realm-specific karmic paths).

References

  1. Buddhist Texts:
    • SN 12.1 (Dependent Origination).
    • MN 136 (Karmic Causality).
    • AN 3.34 (Karma’s Variability).
  2. Academic Papers:
    • [1] Bhikkhu Bodhi (2012). Rebirth as Process.
    • [2] Hameroff & Penrose (2014). Consciousness in the Universe.
    • [3] Tucker (2005). Near-Death Experiences and Rebirth Reports.
  3. Methods:
    • Rabiner (1989). HMM Tutorial.

ใส่ความเห็น

อีเมลของคุณจะไม่แสดงให้คนอื่นเห็น ช่องข้อมูลจำเป็นถูกทำเครื่องหมาย *